Characterization of seal whisker morphology: implications for whisker-inspired flow control applications.
نویسندگان
چکیده
Seals with beaded whiskers-the majority of true seals (Phocids)-are able to trace even minute disturbance caused by prey fish in the ambient flow using only sensory input from their whiskers. The unique three-dimensional undulating morphology of seal whiskers has been associated with their capability of suppressing vortex-induced vibration and reducing drag. The exceptional hydrodynamic traits of seal whiskers are of great interest in renovating the design of aero-propulsion flow components and high-sensitivity flow sensors. It is essential to have well-documented data of seal whisker morphology with statistically meaningful generalization, as the solid foundation for whisker-inspired flow control applications. However, the available whisker morphology data is either incomplete, with measurements of only a few key parameters, or based on a very limited sample size in case studies. This work characterizes the morphology of 27 beaded seal whiskers (harbor seal and elephant seal), using high-resolution computer-tomography scanning at NASA's Glenn Research Center in Cleveland, OH. Over two thousand cross-sectional slices for every individual whisker sample are reconstructed, to generate three-dimensional morphology. This is followed by detailed statistical analysis of a set of key parameters, under an established framework (Hanke et al 2010 J. Exp. Biol. 213 2665-72). While the length parameters are generally consistent with previous studies, we note that the angle of incidence of elliptical cross-sections varies in a wide range, with a majority falling between [Formula: see text] and [Formula: see text]. Angles of incidence at both peaks and troughs appear to roughly follow a Gaussian distribution, but no clear preference of orientation is identified. We discuss the current knowledge of whisker-inspired flow studies, focusing on choices of morphology parameters. The new understanding of whisker morphology can better inform future design of high-sensitivity flow sensors and aero-propulsion flow structures.
منابع مشابه
Optimal Morphology of a Biologically-Inspired Whisker Array on an Obstacle-Avoiding Robot
Whiskers are versatile sensors for short-range navigation and exploration that are widespread in many animal species, especially in rodents. Their arrangement is in very precise rows and arcs on both sides of the animal’s head. The controlled variations between species and the conservation within a species indicates a prominent role of their morphology for their functioning. Because of their en...
متن کاملDevelopment of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array.
Nature has shaped effective biological sensory systems to receive complex stimuli generated by organisms moving through water. Similar abilities have not yet been fully developed in artificial systems for underwater detection and monitoring, but such technology would enable valuable applications for military, commercial, and scientific use. We set out to design a fluid motion sensor array inspi...
متن کاملBiomimetic vibrissal sensing for robots.
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to ...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملBio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor
The design and fabrication of a Polyvinylidene fluoride (PVDF) based, mouse (or rodent) whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinspiration & biomimetics
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2017